

Properties Of Integrals

www.mymathscloud.com

Questions in past papers often come up combined with other topics.

Topic tags have been given for each question to enable you to know if you can do the question or whether you need to wait to cover the additional topic(s).

Scan the QR code(s) or click the link for instant detailed model solutions!

Question 1

Qualification: AP Calculus AB

Areas: Integration, Applications of Differentiation, Limits and Continuity

Subtopics: Properties of Integrals, Fundamental Theorem of Calculus (First), Concavity, Tangents To Curves, Mean Value Theorem, Continuities and Discontinuities, Derivative Tables

Paper: Part B-Non-Calc / Series: 2002 / Difficulty: Hard / Question Number: 6

x	-1.5	-1.0	-0.5	0	0.5	1.0	1.5
f(x)	-1	-4	-6	-7	-6	-4	-1
f'(x)	-7	-5	-3	0	3	5	7

- 6. Let f be a function that is differentiable for all real numbers. The table above gives the values of f and its derivative f' for selected points x in the closed interval $-1.5 \le x \le 1.5$. The second derivative of f has the property that f''(x) > 0 for $-1.5 \le x \le 1.5$.
 - (a) Evaluate $\int_0^{1.5} (3f'(x) + 4) dx$. Show the work that leads to your answer.
 - (b) Write an equation of the line tangent to the graph of f at the point where x = 1. Use this line to approximate the value of f(1.2). Is this approximation greater than or less than the actual value of f(1.2)? Give a reason
 - (c) Find a positive real number r having the property that there must exist a value c with 0 < c < 0.5and f''(c) = r. Give a reason for your answer.
 - (d) Let g be the function given by $g(x) = \begin{cases} 2x^2 x 7 & \text{for } x < 0 \\ 2x^2 + x 7 & \text{for } x \ge 0 \end{cases}$. The graph of g passes through each of the points (x, f(x)) given in the table above. Is it possible that

f and g are the same function? Give a reason for your answer.

Mark Scheme View Online

Question 2

Qualification: AP Calculus AB

Areas: Limits and Continuity, Integration, Applications of Integration

Subtopics: Continuities and Discontinuities, Calculating Limits Algebraically, Average Value of a Function, Properties of Integrals, Integration Technique – Standard Functions, Differentiability

Paper: Part B-Non-Calc / Series: 2003 / Difficulty: Very Hard / Question Number: 6

6. Let f be the function defined by

$$f(x) = \begin{cases} \sqrt{x+1} & \text{for } 0 \le x \le 3\\ 5-x & \text{for } 3 < x \le 5. \end{cases}$$

- (a) Is f continuous at x = 3? Explain why or why not.
- (b) Find the average value of f(x) on the closed interval $0 \le x \le 5$.
- (c) Suppose the function g is defined by

$$g(x) = \begin{cases} k\sqrt{x+1} & \text{for } 0 \le x \le 3\\ mx+2 & \text{for } 3 < x \le 5, \end{cases}$$

where k and m are constants. If g is differentiable at x = 3, what are the values of k and m?

SCAN ME!

Mark Scheme View Online

SCAN ME!

